
The Path to Ring-0 (Windows Edition)

The Path To Ring-0 – Windows Edition (Confidential)

Debasis Mohanty (nopsled)

Agenda

▪Kernel Architecture (High Level)

▪Kernel Bug Classes

▪Kernel Exploitation and Technique
▪ Arbitrary Memory Overwrite - Demo

▪ Privilege Escalation Using Token Impersonation - Demo

▪ Kernel Data Structures (Relevant to Token Impersonation)

▪Kernel Exploitation Mitigation
▪ State of Kernel Mitigation

▪ SMEP bypass (Overview)

12/09/2017 The Path To Ring-0 – Windows Edition (Confidential)

Operating System Privilege Rings

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://en.wikipedia.org/wiki/Protection_ring

Least
Privileged

Most
Privileged

Hypervisor (Ring -1)

12/09/2017

https://en.wikipedia.org/wiki/Protection_ring

Windows Kernel Architecture

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://en.wikipedia.org/wiki/Architecture_of_Windows_NT

Source:
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

Simplified Windows Architecture (User mode <-> Kernel Interaction)

“ntoskrnl.exe” is called the kernel image!

12/09/2017

https://en.wikipedia.org/wiki/Architecture_of_Windows_NT
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

Ring 3 v/s Ring 0

User mode (Ring 3)

▪No access to hardware (User mode
programs has to call system to interact with the
hardware)

▪Restricted environment,
separated process memory

▪Memory (Virtual Address Space):

▪ 32bit: 0x00000000 to 0x7FFFFFFF

▪ 64bit: 0x000'00000000 to 0x7FF'FFFFFFFF

▪Hard to crash the system

The Path To Ring-0 – Windows Edition (Confidential)

Kernel mode (Ring 0)

▪ Full access to hardware

▪Unrestricted access to
everything (Kernel code, kernel
structures, memory, processes, hardware)

▪Memory (Virtual Address Space):

▪ 32bit: 0x80000000 to 0xFFFFFFFF

▪ 64bit: 0xFFFF0800'00000000 to
0xFFFFFFFF'FFFFFFFF

▪Easy to crash the system

For more details on virtual address space, refer to the below URL:
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

12/09/2017

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

User Mode v/s Kernel Mode Crash

User Mode Crash

Operating System doesn’t die!

The Path To Ring-0 – Windows Edition (Confidential)

Kernel Mode Crash (BSoD – aka BugCheck)

Operating System dies!

12/09/2017

Kernel Objects and Data Structure

The Path To Ring-0 – Windows Edition (Confidential)

Key kernel objects and data structure relevant to this talk.

12/09/2017

Key Kernel Data Structures

▪Kernel Dispatch Tables
▪ HalDispatchTable

▪ SSDT

▪ IRP and IOCTL

▪EPROCESS

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Dispatch Tables (Contains Function Pointers)

The Path To Ring-0 – Windows Edition (Confidential)

▪ Holds the address of HAL (Hardware
Abstraction Layer) routines

System Service Descriptor TableHal Dispatch Table

▪ Stores syscall (kernel functions) addresses
▪ It is used when userland process needs to call a

kernel function
▪ This table is used to find the correct function call

based on the syscall number placed in eax/rax
register.

12/09/2017

DeviceIoControl – The API to interact with the driver (1/2)

The Path To Ring-0 – Windows Edition (Confidential)

Reference: https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

Handle to the device

IOCTL – I/O Control codes. This value
identifies the specific operation to be
performed on the device.

A pointer to the input buffer that
contains the data required to
perform the operation.

The size of the input buffer, in bytes.

A pointer to the output buffer that is
to receive the data returned by the
operation.

A pointer to a variable that receives
the size of the data stored in the
output buffer, in bytes.

12/09/2017

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

IOCTL (I/O Control Code)

▪ IOCTL is a 32 bit value that contains several fields.

▪Each bit field defined within it, provides the I/O manager with
buffering and various other information.

▪ It is generally used for requests that don't fit into a standard API

▪ Typically sent from the user mode to kernel.

The Path To Ring-0 – Windows Edition (Confidential)

Image Source and for further reference on IOCTL refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes

12/09/2017

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes

IRP (I/O Request Packet)

▪ It is a structure created by the I/O
manager

▪ It carries all the information that the
driver needs to perform a given
action on an I/O request.

▪ It is only valid within the kernel and
the targeted driver or driver stack.

The Path To Ring-0 – Windows Edition (Confidential)

Image Source and for further reference on IRP refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations

12/09/2017

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations

DeviceIoControl – The API to interact with the driver (2/2)

The Path To Ring-0 – Windows Edition (Confidential)

▪Sends a control code (IOCTL) directly to the I/O manager.

▪ The important parameters are the device driver HANDLE, the I/O
control code (IOCTL) and also the addresses of input and output
buffers.

▪When this API is called, the I/O Manager makes an IRP (I/O
Request Packet) request and delivers it to the device driver.

I/O Manager
IOCTL IRP

DeviceIoControl Driver

12/09/2017

Kernel Bug Classes and Exploitation Techniques

The Path To Ring-0 – Windows Edition (Confidential)

Focus will be on Arbitrary write exploitation and Elevation of Privilege

12/09/2017

Common Kernel Bug Classes

▪UAF

▪Buffer Overflow

▪Double Fetch

▪Race Condition

▪ Type Confusions

▪Arbitrary Write (Write-What-Where)

▪Pool Overflow

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Write-What-Where (Arbitrary Memory Overwrite)

The Path To Ring-0 – Windows Edition (Confidential)

When you control both data (What) and address (Where)

12/09/2017

Write-What-Where (Arbitrary Memory Overwrite)

The Path To Ring-0 – Windows Edition (Confidential)

▪Write-What-Where occurs when you control both buffer and
address

▪Exploitation of the bug could allow overwrite of kernel addresses in
order to hijack control flow.
▪ In this presentation, we will see how the dispatch table (HalDispatchTable)

entry could be modified in order to hijack control flow.

▪Exploitation Primitives
▪ Allocate memory in userland and copy the shellcode

▪ Overwriting Dispatch Tables to gain control

12/09/2017

An Example of Vanilla Write-What-Where Bug (1/2)

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

12/09/2017

An Example of Vanilla Write-What-Where Bug (2/2)

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c

12/09/2017

Lets look at a trickier and better example of
Write-What-Where bug, found by reverse
engineering a closed source driver.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Exploitation Goal

The Path To Ring-0 – Windows Edition (Confidential)

GOAL: Hijack control flow and execute the shellcode.

Exploitation of this bug will allow me to specify What I want to
write and Where I want to write.

12/09/2017

Anatomy of a Kernel Exploit (Write-What-Where)

The Path To Ring-0 – Windows Edition (Confidential)

Shellcode
Copy Shellcode

DeviceIoControl

User Mode

Kernel Mode

I/O Manager

Device Drivers

HalDispatchTable
(After Overwrite)

Bug
Exploitation

NtQueryIntervalProfile

KeQueryIntervalProfile memmove

2

3
4

Allocate Virtual Memory

NtAllocateVirtualMemory

Unmapped / Zero Page

Shellcode

1

Overwrite
Function Pointer

HaliQuerySystemInformation

The 2nd entry of the HalDispatchTable originally
points to HaliQuerySystemInformation before
the control flow is hijacked.

Illustration: Specially handcrafted for Roachcon

12/09/2017

Hal Dispatch Table (Before and After Overwrite)

The Path To Ring-0 – Windows Edition (Confidential)

Hal Dispatch Table (Before Overwrite) Hal Dispatch Table (After Overwrite)

Note: Overwriting a Kernel dispatch table pointer (first
described by Ruben Santamarta in a 2007 paper titled
"Exploiting common flaws in drivers")!

12/09/2017

How To Find Such Bugs In Closed Source Drivers

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Bug Analysis – Explained During Demo (1/3)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Bug Analysis – Explained During Demo (2/3)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Bug Analysis – Explained During Demo (3/3)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

-- Demo --
Write What Where Exploitation

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Token Stealing :: Token Duplication :: Token Impersonation

The Path To Ring-0 – Windows Edition (Confidential)

It all means the same from an exploitation context

12/09/2017

Access Token Introduction

From MSDN :

An access token is an object that describes the security context of a process or thread. The information
in a token includes the identity and privileges of the user account associated with the process or thread.

For Further details:

▪ https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx

▪ https://technet.microsoft.com/en-us/library/cc783557(v=ws.10).aspx

There are two types of access tokens:

▪ Primary Token - This is the access token associated with a process, derived from the users privileges,
and is usually a copy of the parent process primary token.

▪ Impersonation Token - This is a secondary token which can be used by a process or thread to allow it
to "act" as another user.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Every running process has an access token, which has set
of information that describes the privileges of it.

In the coming slides, I will discuss how to take advantage
of it to elevate to system privilege.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Typical Token Stealing Shellcode (Windows 7 x86)

The Path To Ring-0 – Windows Edition (Confidential)

The following slides explains how fs:0x124 is derived and the related data structures

12/09/2017

More Token Stealing Shellcodes
(Windows 2003 x64 v/s Windows 7 x64)

▪ https://www.exploit-db.com/exploits/37895/

The Path To Ring-0 – Windows Edition (Confidential)

▪ https://www.exploit-db.com/exploits/41721/

12/09/2017

Meterpreter: getsystem

▪ metasploit-framework/lib/rex/post/meterpreter/ui/console/command_dispatcher/priv/elevate.rb

The Path To Ring-0 – Windows Edition (Confidential)

Meterpreter uses this
technique too as one of
the privilege escalation
technique.

12/09/2017

Token Stealing data structure follows in the following slides…

Explains how the shellcode in the previous slides traverse
through each data structures until it finds the SYSTEM token.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

EPROCESS

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

EPROCESS and SYSTEM Token

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

KPCR (Kernel Process Control Region)

▪ Stores information about the processor.

▪ Always available at a fixed location (fs[0] on x86, gs[0] on x64) which is handy while creating
position independent code.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

KPRCB (Kernel Processor Control Block)

▪ Provides the location of the KTHREAD structure for the thread that the processor is executing.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

KTHREAD

▪ The KTHREAD structure is the first part of the larger ETHREAD structure.

▪ Maintains some low-level information about the currently executing thread.

▪ There’s lots of info in there but the main thing we’re concerned about for our purposes is the
KTHREAD.ApcState member which is a KAPC_STATE structure.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

KAPC_STATE

▪ TBD

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Token Stealing – Math Involved in Calculating Offset

The Path To Ring-0 – Windows Edition (Confidential)

Calculating Offsets
▪ KTHREAD OFFSET = (KPCR::PrcbData Offset +

KPRCB::KTHREAD Relative Offset) = 0x120 + 0x4

Illustration: Specially handcrafted for Roachcon

12/09/2017

EPROCESS :: LIST_ENTRY (Double Linked List)

The Path To Ring-0 – Windows Edition (Confidential)

The ActiveProcessLinks field in the EPROCESS structure is a pointer to the _LIST_ENTRY structure of a process. It
contains pointers to the processes immediately before (BLINK) and immediately after (FLINK) this one in the list.

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

Illustration: Specially handcrafted for Roachcon

12/09/2017

-- Demo --
Elevation of Privilege Using Token Stealing Technique

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

WinDbg: Finding System token

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

WinDbg: Replacing cmd.exe token with System token

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

SMEP (Supervisor Mode Execution Prevention)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

SMEP (Supervisor Mode Execution Prevention)

▪ Introduced with Windows 8.0 (32/64 bits)

▪SMEP prevent executing a code from a user-mode page in kernel
mode or supervisor mode (CPL = 0).

▪Any attempt of calling a user-mode page from kernel mode code,
SMEP generates an access violation which triggers a bug check.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Attack and Prevention (SMEP) Illustration

The Path To Ring-0 – Windows Edition (Confidential)

Kernel

User

Shellcode

Bug
Exploitation

Exploit
PoC/Script

Without SMEP

Kernel

User

Shellcode

Bug
Exploitation

Exploit
PoC/Script

With SMEP

Access Violation
followed by BSoD

Illustration: Specially handcrafted for Roachcon

12/09/2017

SMEP, SMAP & CR4 Register

The Path To Ring-0 – Windows Edition (Confidential)

Image Source: Intel® 64 and IA-32 Architectures Software Developer Manual: Vol 3 (Page # 76)
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-
developer-system-programming-manual-325384.html

12/09/2017

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

SMEP bypass techniques

▪ROP : ExAllocatePoolWithTag (NonPagedExec) + memcpy+jmp

▪ROP : clear SMEP flag in cr4

▪ Jump to executable Ring0 memory (Artem’s Shishkin technique)

▪Set Owner flag of PTE to 0 (MI_PTE_OWNER_KERNEL)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Remote v/s Local Kernel Exploits

▪Remote Attack Surface
▪ HTTP.sys (HTTP/HTTPs) - MS10-034, MS15-034

▪ Srv.sys (SMB1) - MS17-010, MS15-083

▪ Srv2.sys (SMB2)

▪ AFD.sys (WinSock)

▪ Local Attack Surface
▪ AFD.sys (MS11-080)

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

Kernel Pools Attacks

The Path To Ring-0 – Windows Edition (Confidential)

A Session on Windows Kernel Exploitation is incomplete
without a walkthrough of Kernel Pool Attacks.

It will be another 30-40 minutes session to cover Kernel
pool attacks. If interested I’ll be happy to do a session on
it during one of the Friday haxbeer.

12/09/2017

Kernel Exploit Mitigations

The Path To Ring-0 – Windows Edition (Confidential)

Reference:
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf

12/09/2017

EMET For Kernel (To be validated)

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://twitter.com/aionescu/status/876482815784779777

12/09/2017

https://twitter.com/aionescu/status/876482815784779777

Mitigations v/s Bypasses – The Way To Look At It

The Path To Ring-0 – Windows Edition (Confidential)

▪ Mitigate Root Cause (Type 1) – KASLR/ASLR, DEP, Code Level Fix

▪ Prevent/Kill The Technique (Type 2) – SMEP, CFG

▪ Remove The Vulnerable Functionality (Type 3)

▪ Restrict Access (Type 4) – Integrity Level

▪ Sandboxing (Type 5)

12/09/2017

Type 2 Type 2 ? ? Type 3 ? ? ? Type 1

Type 4 Type 1 Type 3

Type 3 Type 3 Type 5 ? Type 4 ?

Type 5 Type 3

Type 3 Type 3 ? Type 3 ? ? Type 3 ?

Type 3 Type 1 Type 5 Type 4

Type 3 ? ? Type 3 ? ?

Type 5 Type 3 Type 3

Threat Landscape v/s Mitigations v/s Bypasses

The Path To Ring-0 – Windows Edition (Confidential)

My Personal way to look at it!

12/09/2017

Kernel Read/Write Primitive is Still Alive

The Path To Ring-0 – Windows Edition (Confidential)

This presentation is recent example of tagWND kernel read/write primitive and on newest versions of Windows 10

12/09/2017

People worth mentioning…

▪ List of people who contributed significantly towards Windows kernel
security research. Also some of the original work on Windows kernel
research came from these people.
▪ Barnaby Jack

▪ Jonathan Lindsay

▪ Stephen A. Ridley

▪ Nikita Tarakanov

▪ Alex Ionescu

▪ j00ru

▪ Tarjei Mandt

▪ Matt Miller

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017

References

The Path To Ring-0 – Windows Edition (Confidential)

▪ Windows SMEP Bypass – Core Security
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf

▪ Bypassing Intel SMEP on Windows 8 x64 Using Return-oriented Programming
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html

▪ Windows Security Hardening Through Kernel Address Protection - Mateusz “j00ru” Jurczyk

http://j00ru.vexillium.org/blog/04_12_11/Windows_Kernel_Address_Protection.pdf

12/09/2017

https://www.coresecurity.com/system/files/publications/2016/05/Windows SMEP bypass U=S.pdf
http://blog.ptsecurity.com/2012/09/bypassing-intel-smep-on-windows-8-x64.html
http://j00ru.vexillium.org/blog/04_12_11/Windows_Kernel_Address_Protection.pdf

