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Agenda

▪Kernel Architecture (High Level)

▪Kernel Bug Classes

▪Kernel Exploitation and Technique
▪ Arbitrary Memory Overwrite - Demo

▪ Privilege Escalation Using Token Impersonation - Demo

▪ Kernel Data Structures (Relevant to Token Impersonation)

▪Kernel Exploitation Mitigation
▪ State of Kernel Mitigation

▪ SMEP bypass (Overview)
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Operating System Privilege Rings
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Source: https://en.wikipedia.org/wiki/Protection_ring

Least 
Privileged

Most 
Privileged

Hypervisor (Ring -1)
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Windows Kernel Architecture 
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Source: https://en.wikipedia.org/wiki/Architecture_of_Windows_NT

Source: 
https://www.microsoftpressstore.com/articles/article.aspx?p=2201301&seqNum=2

Simplified Windows Architecture (User mode <-> Kernel Interaction)

“ntoskrnl.exe” is called the kernel image!
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Ring 3 v/s Ring 0

User mode (Ring 3)

▪No access to hardware (User mode 
programs has to call system to interact with the 
hardware)

▪Restricted environment, 
separated process memory 

▪Memory (Virtual Address Space): 

▪ 32bit: 0x00000000 to 0x7FFFFFFF

▪ 64bit: 0x000'00000000 to 0x7FF'FFFFFFFF

▪Hard to crash the system
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Kernel mode (Ring 0)

▪ Full access to hardware

▪Unrestricted access to 
everything (Kernel code, kernel 
structures, memory, processes, hardware)

▪Memory (Virtual Address Space): 

▪ 32bit: 0x80000000 to 0xFFFFFFFF

▪ 64bit: 0xFFFF0800'00000000 to 
0xFFFFFFFF'FFFFFFFF 

▪Easy to crash the system

For more details on virtual address space, refer to the below URL:
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
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User Mode v/s Kernel Mode Crash

User Mode Crash 

Operating System doesn’t die!
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Kernel Mode Crash (BSoD – aka BugCheck)

Operating System dies!
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Kernel Objects and Data Structure
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Key kernel objects and data structure relevant to this talk.
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Key Kernel Data Structures

▪Kernel Dispatch Tables
▪ HalDispatchTable

▪ SSDT

▪ IRP and IOCTL

▪EPROCESS
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Dispatch Tables (Contains Function Pointers)
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▪ Holds the address of HAL (Hardware 
Abstraction Layer) routines

System Service Descriptor TableHal Dispatch Table

▪ Stores syscall (kernel functions) addresses 
▪ It is used when userland process needs to call a 

kernel function 
▪ This table is used to find the correct function call 

based on the syscall number placed in eax/rax
register.
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DeviceIoControl – The API to interact with the driver (1/2)
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Reference: https://msdn.microsoft.com/en-us/library/windows/desktop/aa363216(v=vs.85).aspx

Handle to the device

IOCTL – I/O Control codes. This value 
identifies the specific operation to be 
performed on the device.

A pointer to the input buffer that 
contains the data required to 
perform the operation. 

The size of the input buffer, in bytes.

A pointer to the output buffer that is 
to receive the data returned by the 
operation.

A pointer to a variable that receives 
the size of the data stored in the 
output buffer, in bytes.
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IOCTL (I/O Control Code)

▪ IOCTL is a 32 bit value that contains several fields. 

▪Each bit field defined within it, provides the I/O manager with 
buffering and various other information.

▪ It is generally used for requests that don't fit into a standard API

▪ Typically sent from the user mode to kernel.
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Image Source and for further reference on IOCTL refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/defining-i-o-control-codes
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IRP (I/O Request Packet)

▪ It is a structure created by the I/O 
manager

▪ It carries all the information that the 
driver needs to perform a given 
action on an I/O request.

▪ It is only valid within the kernel and 
the targeted driver or driver stack.
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Image Source and for further reference on IRP refer:
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/i-o-stack-locations
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DeviceIoControl – The API to interact with the driver (2/2)
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▪Sends a control code (IOCTL) directly to the I/O manager.

▪ The important parameters are the device driver HANDLE, the I/O 
control code (IOCTL) and also the addresses of input and output 
buffers.

▪When this API is called, the I/O Manager makes an IRP (I/O 
Request Packet) request and delivers it to the device driver.

I/O Manager
IOCTL IRP

DeviceIoControl Driver
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Kernel Bug Classes and Exploitation Techniques
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Focus will be on Arbitrary write exploitation and Elevation of Privilege
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Common Kernel Bug Classes

▪UAF 

▪Buffer Overflow

▪Double Fetch

▪Race Condition

▪ Type Confusions

▪Arbitrary Write (Write-What-Where)

▪Pool Overflow
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Write-What-Where (Arbitrary Memory Overwrite)
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When you control both data (What) and address (Where)
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Write-What-Where (Arbitrary Memory Overwrite)
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▪Write-What-Where occurs when you control both buffer and 
address

▪Exploitation of the bug could allow overwrite of kernel addresses in 
order to hijack control flow.
▪ In this presentation, we will see how the dispatch table (HalDispatchTable) 

entry could be modified in order to hijack control flow.

▪Exploitation Primitives
▪ Allocate memory in userland and copy the shellcode

▪ Overwriting Dispatch Tables to gain control
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An Example of Vanilla Write-What-Where Bug (1/2)

The Path To Ring-0 – Windows Edition (Confidential)

Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c
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An Example of Vanilla Write-What-Where Bug (2/2)
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Source: https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Driver/ArbitraryOverwrite.c
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Lets look at a trickier and better example of 
Write-What-Where bug, found by reverse 
engineering a closed source driver. 
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Exploitation Goal
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GOAL: Hijack control flow and execute the shellcode. 

Exploitation of this bug will allow me to specify What I want to 
write and Where I want to write. 
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Anatomy of a Kernel Exploit (Write-What-Where)
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Shellcode
Copy Shellcode

DeviceIoControl

User Mode

Kernel Mode

I/O Manager

Device Drivers

HalDispatchTable 
(After Overwrite)

Bug 
Exploitation

NtQueryIntervalProfile

KeQueryIntervalProfile memmove

2

3
4

Allocate Virtual Memory

NtAllocateVirtualMemory

Unmapped / Zero Page

Shellcode

1

Overwrite 
Function Pointer

HaliQuerySystemInformation

The 2nd entry of the HalDispatchTable originally 
points to HaliQuerySystemInformation before 
the control flow is hijacked.

Illustration: Specially handcrafted for Roachcon
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Hal Dispatch Table (Before and After Overwrite)
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Hal Dispatch Table (Before Overwrite) Hal Dispatch Table (After Overwrite)

Note: Overwriting a Kernel dispatch table pointer (first 
described by Ruben Santamarta in a 2007 paper titled 
"Exploiting common flaws in drivers")!
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How To Find Such Bugs In Closed Source Drivers
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Bug Analysis – Explained During Demo (1/3)
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Bug Analysis – Explained During Demo (2/3)
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Bug Analysis – Explained During Demo (3/3)
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-- Demo --
Write What Where Exploitation
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Token Stealing :: Token Duplication :: Token Impersonation
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It all means the same from an exploitation context
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Access Token Introduction

From MSDN : 

An access token is an object that describes the security context of a process or thread. The information 
in a token includes the identity and privileges of the user account associated with the process or thread.

For Further details:  

▪ https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx

▪ https://technet.microsoft.com/en-us/library/cc783557(v=ws.10).aspx

There are two types of access tokens: 

▪ Primary Token - This is the access token associated with a process, derived from the users privileges, 
and is usually a copy of the parent process primary token.

▪ Impersonation Token - This is a secondary token which can be used by a process or thread to allow it 
to "act" as another user.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017



Every running process has an access token, which has set 
of information that describes the privileges of it. 

In the coming slides, I will discuss how to take advantage 
of it to elevate to system privilege.
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Typical Token Stealing Shellcode (Windows 7 x86 )
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The following slides explains how fs:0x124 is derived and the related data structures 
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More Token Stealing Shellcodes
(Windows 2003 x64 v/s Windows 7 x64)

▪ https://www.exploit-db.com/exploits/37895/
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▪ https://www.exploit-db.com/exploits/41721/
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Meterpreter: getsystem

▪ metasploit-framework/lib/rex/post/meterpreter/ui/console/command_dispatcher/priv/elevate.rb
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Meterpreter uses this 
technique too as one of 
the privilege escalation 
technique.
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Token Stealing data structure follows in the following slides…

Explains how the shellcode in the previous slides traverse 
through each data structures until it finds the SYSTEM token.  
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EPROCESS
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EPROCESS and SYSTEM Token
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KPCR (Kernel Process Control Region)

▪ Stores information about the processor.

▪ Always available at a fixed location (fs[0] on x86, gs[0] on x64) which is handy while creating 
position independent code.
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KPRCB (Kernel Processor Control Block)

▪ Provides the location of the KTHREAD structure for the thread that the processor is executing.
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KTHREAD

▪ The KTHREAD structure is the first part of the larger ETHREAD structure.

▪ Maintains some low-level information about the currently executing thread.

▪ There’s lots of info in there but the main thing we’re concerned about for our purposes is the 
KTHREAD.ApcState member which is a KAPC_STATE structure.

The Path To Ring-0 – Windows Edition (Confidential)12/09/2017



KAPC_STATE

▪ TBD
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Token Stealing – Math Involved in Calculating Offset
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Calculating Offsets
▪ KTHREAD OFFSET = (KPCR::PrcbData Offset + 

KPRCB::KTHREAD Relative Offset) = 0x120 + 0x4

Illustration: Specially handcrafted for Roachcon
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EPROCESS :: LIST_ENTRY (Double Linked List)
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The ActiveProcessLinks field in the EPROCESS structure is a pointer to the _LIST_ENTRY structure of a process. It 
contains pointers to the processes immediately before (BLINK) and immediately after (FLINK) this one in the list.

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

EPROCESS

KPROCESS

LIST_ENTRY

FLINK

BLINK

Illustration: Specially handcrafted for Roachcon
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-- Demo --
Elevation of Privilege Using Token Stealing Technique
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WinDbg: Finding System token
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WinDbg: Replacing cmd.exe token with System token
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SMEP (Supervisor Mode Execution Prevention)
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SMEP (Supervisor Mode Execution Prevention)

▪ Introduced with Windows 8.0 (32/64 bits)

▪SMEP prevent executing a code from a user-mode page in kernel 
mode or supervisor mode (CPL = 0). 

▪Any attempt of calling a user-mode page from kernel mode code, 
SMEP generates an access violation which triggers a bug check.
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Attack and Prevention (SMEP) Illustration
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Kernel

User

Shellcode

Bug 
Exploitation

Exploit 
PoC/Script

Without SMEP

Kernel

User

Shellcode

Bug 
Exploitation

Exploit 
PoC/Script

With SMEP

Access Violation 
followed by BSoD

Illustration: Specially handcrafted for Roachcon
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SMEP, SMAP & CR4 Register
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Image Source: Intel® 64 and IA-32 Architectures Software Developer Manual: Vol 3 (Page # 76)
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-
developer-system-programming-manual-325384.html

12/09/2017

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html


SMEP bypass techniques

▪ROP : ExAllocatePoolWithTag (NonPagedExec) + memcpy+jmp

▪ROP : clear SMEP flag in cr4

▪ Jump to executable Ring0 memory (Artem’s Shishkin technique)

▪Set Owner flag of PTE to 0 (MI_PTE_OWNER_KERNEL)
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Remote v/s Local Kernel Exploits

▪Remote Attack Surface
▪ HTTP.sys (HTTP/HTTPs) - MS10-034, MS15-034

▪ Srv.sys (SMB1) - MS17-010, MS15-083

▪ Srv2.sys (SMB2) 

▪ AFD.sys (WinSock)

▪ Local Attack Surface
▪ AFD.sys (MS11-080)
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Kernel Pools Attacks
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A Session on Windows Kernel Exploitation is incomplete 
without a walkthrough of Kernel Pool Attacks. 

It will be another 30-40 minutes session to cover Kernel 
pool attacks. If interested I’ll be happy to do a session on 
it during one of the Friday haxbeer.
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Kernel Exploit Mitigations
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Reference: 
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf 
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EMET For Kernel (To be validated)
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Source: https://twitter.com/aionescu/status/876482815784779777
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Mitigations v/s Bypasses – The Way To Look At It

The Path To Ring-0 – Windows Edition (Confidential)

▪ Mitigate Root Cause (Type 1) – KASLR/ASLR, DEP, Code Level Fix

▪ Prevent/Kill The Technique (Type 2) – SMEP, CFG

▪ Remove The Vulnerable Functionality (Type 3)

▪ Restrict Access (Type 4) – Integrity Level

▪ Sandboxing (Type 5)
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Type 2 Type 2 ? ? Type 3 ? ? ? Type 1 

Type 4 Type 1 Type 3

Type 3 Type 3 Type 5 ? Type 4 ?

Type 5 Type 3

Type 3 Type 3 ? Type 3 ? ? Type 3 ?

Type 3 Type 1 Type 5 Type 4

Type 3 ? ? Type 3 ? ?

Type 5 Type 3 Type 3

Threat Landscape v/s Mitigations v/s Bypasses
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My Personal way to look at it!

12/09/2017



Kernel Read/Write Primitive is Still Alive
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This presentation is recent example of tagWND kernel read/write primitive and on newest versions of Windows 10
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People worth mentioning…

▪ List of people who contributed significantly towards Windows kernel 
security research. Also some of the original work on Windows kernel 
research came from these people. 
▪ Barnaby Jack

▪ Jonathan Lindsay

▪ Stephen A. Ridley

▪ Nikita Tarakanov

▪ Alex Ionescu

▪ j00ru

▪ Tarjei Mandt

▪ Matt Miller
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