
Debasis
Mohanty

Software Security Engineering

Debasis Mohanty

Head of Technical Services
SEQA Security

www.seqa.co.nz

Learnings from the past to fix the future

OWASP's 20th Anniversary Event
24-25 September 2021

Who am I?
How my experience is relevant to this talk?

• Head of Security Services at SEQA Security (a New Zealand based company)

• Over 20 years of Offensive and Defensive Security Experience (since 1997-1998)

• The vast majority of the experience has been vulnerability research-focused and exploit development

• Over 10+ years of Software Security Engineering Background

• Led Security Engineering CoE of mid-sized and large Technology Companies

• Worked closely with the multiple engineering teams to integrate security across SDLC

• A simple security guy who likes to solve complex security problems using simple methods

Personal Website: coffeeandsecurity.com Twitter: @coffeensecurity Email: d3basis.m0hanty@gmail.com

Over 20 years of experience
in doing offensive and
defensive security

This talk is broken down
into four parts

• The History:
Historical data shows we continue to see around two decades old security bugs

• The Reason:
Why do we still continue to see one to two decades old security bugs?

• The Solution:
The top two mitigation strategies to consider based on the past learnings

• The Misconception:
The Silver Bullet In Software Security Engineering

Overview

The History:

The Present State of Security Vulnerabilities:
Historical data shows we continue to see around two decades old security bugs.

Let’s begin with the
history and look at the
State of Software Security
Vulnerabilities

• Cross Site Scripting (webapp)
As per Wikipedia: https://en.wikipedia.org/wiki/Cross-site_scripting
• Microsoft security-engineers introduced the term "cross-site scripting" in January 2000
• XSS vulnerabilities have been reported and exploited since the 1990s

• SQL Injection (webapp and OS-native apps)
As per Wikipedia: https://en.wikipedia.org/wiki/SQL_injection
• The first public discussions of SQL injection started appearing around 1998 (an article in Phrack Magazine)

• Deserialization Issue (web-app, OS-native apps)
• 01 Aug 2002: Integer overflow in xdr_array() function when deserializing the XDR stream

https://www.kb.cert.org/vuls/id/192995

Top Application Security Vulnerabilities
That has be around for over two decades

The History:
The State of Software
Security Vulnerabilities

The History:
The State of Software
Security Vulnerabilities

• Buffer Overflow
As per Wikipedia: https://en.wikipedia.org/wiki/Buffer_overflow
• Buffer overflows were understood and partially publicly documented as early as 1972
• The earliest documented hostile exploitation of a buffer overflow was in 1988 (Morris worm)
• In 1996: Phrack magazine article "Smashing the Stack for Fun and Profit“ by Elias Levy (aka Aleph One)

• Race Condition (OS, OS-Native apps and webapps)
• May 1995: Publication title “A Taxonomy of UNIX System and Network Vulnerabilities”

https://cwe.mitre.org/documents/sources/ATaxonomyofUnixSystemandNetworkVulnerabilities%5BBishop95%5D.pdf
• CVE-2001-0317: https://nvd.nist.gov/vuln/detail/CVE-2001-0317

• Use-After-Free (UAF) and Double Free
• CVE-2006-4997: Freed pointer dereference in the clip_mkip function in net/atm/clip.c of the ATM subsystem in Linux kernel
• CVE-2002-0059: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0059
• More examples of double free: https://cwe.mitre.org/data/definitions/415.html

Top OS and OS-Native Apps Vulnerabilities
That has be around for over one to two decades

History of Few Common Bug Classes

• Observations:
• The majority of the bug

classes in the list have been
around two decades

• This list relates to bugs
affecting multiple
applications and software.

• The count of bugs across
each year may not
necessarily be accurate.

• However, you get an idea
that these bugs have been
around for a long period

• Conclusion:
Given that these bug classes
have been around for two
decades, it implies that
something is not right with how
the Industry has dealt with
these bugs.

Note: This may not be the most comprehensive list but you get the overall picture.

The History:
The State of Software
Security Vulnerabilities

Screenshot date: 15 September 2021

The Big Question

So, why do we continue to see one to two decades-
old security bugs?

The Reason(s)

There are many reasons, but here we will discuss the two most prominent reasons.

The Two Most Prominent Reasons

The two most prominent reasons are obscured within the way the vast majority of the
Organisation responds to a bug report of the applications and software:

• They are responsible for supporting

• They aren’t responsible for supporting

The most common
reason: This bug is not my
problem; it is someone
else's problem.

The Reasons

Note: While there are many reasons but here we will discuss the two most prominent reasons

Typical Response For A Bug Report
(of the applications and software you support)

Typical vulnerability mitigation strategy, upon receiving a bug report affecting the
software you are responsible for:

• Fix exactly what is reported

• Fix exactly what is reported including any other instances of the same bug

• Fix based on the bugs risk rating but follow the second approach

While this is fine but…

Reason No. 1

The Reason No. 1

Disadvantage of Such Mitigation Strategies

You fix a reported bug but do not check for any bug
instances or variants in the same application.

You are likely to miss other instances and variants
of the same bug in the application (if they exist).

You fix all instances and variants of a particular bug in an
application but do not check whether similar bugs exist in
other applications you support.

You are likely to miss instances and variants of the
same bug if they exist in other applications.

You follow the second approach but fix issues with
relatively higher risk ratings (e.g. critical/high/medium) but
do not fix any lower risk rating issue.

Several historical evidence shows that bugs that
look low hanging or trivial can be combined with
other bugs to perform a more practical attack.

Common Mitigation Strategies Disadvantages

If such mitigation strategies resonate with your bug mitigation practices, you are far from making your application
and software resilient against known security bugs.

Reason No. 2 The Way “The Industry” Respond
To Any Publicly Reported Security Bug

While Path B may look obvious, this is
where is hidden one of the significant
root causes of why we continue to
see common security bugs that have
been around for over 1-2 decades.

The flow chart illustrates the most common approach across the industry while dealing with or responding to a bug report.

Path A is the most common
response to a security bug
by the majority of the
organisation.

Reason No.2

The Solution

The Solution

Tackling security vulnerabilities going forward based on the learnings from the past

The Solution No. 1

No.1 - Learnings from the past

Learnings from the historical records of all the known bugs

Let’s start by
understanding the
difference between a Bug
Class and Bug Nature.

• Class of the bug can be described as the way a particular bug is exploited and/or it’s
resulting impact.

• Nature of the bug primarily relates to the root cause of the bug.

• Example 1: Cross-Site Scripting in a file upload page
• Here the bug class is Cross Site Scripting.
• However, the nature of the bug is ‘missing sanitisation of tainted inputs’

• Example2: SQL Injection in an authentication form
• SQL Injection is a bug class name.
• However, the nature of bug is insecure interpretation of tainted inputs as commands.

Understanding Bug Class and Bug Nature

The corresponding root
cause and bug nature of a
bug class.

Translating A Bug Class
To It’s Corresponding Root Cause and Bug Nature

Note: The above list is not comprehensive. Instead, these are few examples provided as a guideline to understand the difference between a bug class
and the bug nature or the root cause.

Bug Class / Type Root Cause Bug Nature

Cross Site Scripting When the tainted input becomes output without
sanitisation

• Injection Flaw

SQL Injection When tainted input becomes command • Injection Flaw
• Insecure Interpretation of Input

Cross Site Request Forgery Lack of server-side mechanism to differentiate
between legit and forged request

• Trust Boundary Violation

Broken Access Control Missing or inadequate check against required
permissions

• Trust Boundary Violation
• Inadequate Session Management

Command Injection When tainted input becomes command • Injection Flaw
• Insecure Interpretation of Input

The approach towards
mitigating and managing
security vulnerabilities

The Way “The Industry” Must Respond
To Any Publicly Reported Bugs

Root Cause Analysis and
Decoding The Nature of a
Bug

Decoding The Nature of a Bug (MS00-083)
CVE-2000-0817 (MS00-083): Buffer overflow in the HTTP protocol parser for Microsoft Network Monitor (Netmon) allows
remote attackers to execute arbitrary commands via malformed data, aka the "Netmon Protocol Parsing" vulnerability.

Types of parsing
vulnerabilities Decoding The Nature of a Bug

(More Examples)

• File Parsing Vulnerabilities
• MS04-007: ASN.1 parsing vulnerability (828028)
• MS04-028: Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution

• Protocol Parsing Vulnerabilities
• MS00-083: Netmon Protocol Parsing Vulnerability
• CVE-2004-0054: Multiple vulnerabilities in the H.323 protocol implementation for Cisco IOS 11.3T

through 12.2T

• Path Parsing Vulnerabilities
• MS00-017: DOS Device in Path Name Vulnerability
• MS00-078: Web Server Folder Traversal Vulnerability

All these examples imply that any parser can have such security problems.

Recommendations
Based on learnings from the historical bug reports

• Combing Operation (to crack down on known security bugs)
• Treat every security bug report as important regardless of whether it affects your or another company software and dissect

the bug nature to take appropriate mitigation actions.

• Thoroughly go through the historical bug records in the CVE databases (cvedetails.com and cve.mitre.org) or similar vendor
databases, including the exploit databases (exploit-db.com), to identify all kinds of known bugs in your applications.

• Attack Vector Database (Create and keep it up-to-date)
• Keep the database updated with the intel obtained through previous step regardless of whether the bug affects your or

another company's software.

• Refer to the database for identifying potential risks in your existing application and during future design changes.

• Identify All Bug Variants (across all applications you support)
• Upon identifying a bug in a particular application, identify all instances and variants across the same application and any

other applications you support to apply appropriate mitigation consistently.

The Solution No.2

No.2 - Learnings from the past

Learnings from the way memory corruption bugs have been brought under control
in OS, Web Browsers and OS-Native Apps

Behavioural v/s Non-
Behavioural Mitigation Typical Exploit and Defense In Depth

(Windows Edition)

Trigger the bug

Indirect Jump or call

ROP Chain

Shellcode (Payload)

NOPSLED

Typical Exploit Building Blocks Trigger the bug

Indirect Jump or call
(jmp / call / Stack Pivot)

ROP Chain

Shellcode (Payload)

NOPSLED

ASLR

DEP / NX

Targeted Mitigation
(behavioural v/s non-behavioural checks)

ACG

CFG / XFG

Address Space Randomisation

Mark memory pages as non-
executable

Prevents the ability to allocate
new executable memory

Prevent indirect jump or call.
Note: CFG is deprecated, and an improved
version called XFG will be introduced in
future releases of Windows.

Behavioural Check

Non-Behavioural
Check

Behavioural v/s Non-
Behavioural Mitigation Targeted Exploit Mitigation

(Windows Edition)

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-
protection?view=o365-worldwide

• Modern Operating Systems and Web
Browsers focuses on killing all known
techniques used in an exploit

• The list includes both behavioural and non-
behavioural checks

Windows 10 Mitigation Available under exploit protection

Arbitrary code guard (ACG) yes
Block remote images yes
Block untrusted fonts yes
Data Execution Prevention (DEP) yes
Export address filtering (EAF) yes
Force randomization for images (Mandatory ASLR) yes
NullPage Security Mitigation yes (Included natively in Windows 10)
Randomize memory allocations (Bottom-Up ASLR) yes
Simulate execution (SimExec) yes
Validate API invocation (CallerCheck) yes
Validate exception chains (SEHOP) yes
Validate stack integrity (StackPivot) yes
Certificate trust (configurable certificate pinning) Windows 10 provides enterprise certificate pinning

Heap spray allocation Ineffective against newer browser-based exploits; newer
mitigations provide better protection. See Mitigate threats by
using Windows 10 security features for more information

Block low integrity images yes
Code integrity guard yes
Disable extension points yes
Disable Win32k system calls yes
Do not allow child processes yes
Import address filtering (IAF) yes
Validate handle usage yes
Validate heap integrity yes
Validate image dependency integrity yes

Windows 10 mitigation for various known exploit techniques

Behavioural v/s Non-
Behavioural Mitigation Web-based Application Mitigation

• In Web-based applications, the widely used mitigation techniques primarily focus on non-
behavioural checks against attacks.

Example: Input Validation, Output Escaping, Parameterized Queries etc

• There is limited or no focus on introducing behavioural based mitigation

Behavioural based checks Introducing Behavioral Based Checks
(in applications and software)

Image Source: chess.com

• An adversary can only make a finite set of moves

• Technically applications or software can be programmed to analyse
infinite moves of an adversary and respond accordingly

• Integrating Machine Learning (ML) with your critical application
infrastructure can do such tasks with much ease.

• ML/AI Technology has matured significantly over the years.

• Any seasoned developer can leverage ML/AI technology to
integrate with applications.

Machine Learning for
applications and software Integrating Machine Learning

(in applications and software)

ML Inference System

ML Model

Web ApplicationsApplication Logs

Internet of
Things

Apache
Kafka

Web APIs

Apache
Kafka

Data Source Data DestinationML Inference Host

A simple design of ML integration with application

Recommendations
Based on learnings from the OS and Browser mitigation

• Introduce Machine Learning (ML)
• Aside from the standard mitigation, introduce ML/AI technology to build behavioral checks within your application

• Train the ML to monitor behaviours and any deviations in use cases

• Tackling 0-days!!! Is it practical? Yes – To a larger extent
• Refer to CVEs, exploit databases and other product vendors security advisory, to track the nature of bugs.

• Map those bugs with your products/applications and address them if there are similar nature bugs

• Train the ML/AI to analyse and understand the nature of legit IN and OUT traffic. Any deviation must be blocked and
inspected.

• While achieving 100% resilience against 0-days may not seem practical. Still, with comprehensive defense-in-depth and
leveraging ML, 0-days exploitation can be made very difficult to the extent that it becomes nearly impossible.

The Misconception:
DevSecOps – The Silver
Bullet In Software
Security Engineering

The Misconception

The Silver Bullet In Software Security Engineering

The Paradigm Shift
(in Software “Security” Engineering)

The Software Security
Engineering Lifecycle
Timeline

Timeline 1985 1988 1999 2001 2002 2003 2004 2005 2006 2007 2009 2011 2012 2013 2014 2015 2017 2019 2021

Waterfall
Initial Industry

Adoption
1988: NIST SP 500-153 - Guide to Auditing for Controls and Security

2002: GIAC Paper - Security in the SDLC by Larry G
2004: IEEE Publication: Software Security by G. McGraw
2004: The OWASP Testing Project v1.0

2006 (May): Microsoft Secure Development Lifecycle by Michael Howard and Steve Lipner

2001 2002 2003 2004 2005 2006 2007 2009 2011 2012 2013 2014 2015 2017 2019 2021

Agile

2005 (Dec): Secure Software Development Life Cycle Processes by Noopur Davis (Brief mention of Security in Agile)
2006 (May): Microsoft Secure Development Lifecycle by Michael Howard and Steve Lipner
2006 (Aug): Department of Homeland Security - Security in the Software Lifecycle

2007 2009 2011 2012 2013 2014 2015 2017 2019 2021

DevOps Ideation Introduced
Initial Industry

Adoption
2012 (Jan): DevOpsSec: Creating the Agile Triangle (Gartner)
2012 (Apr): DevOpsSec Applying DevOps Principles to Security
(DevOpsDays Presentation)

2015 (Oct): AWS re:Invent - Architecting
for End-to-End Security in the Enterprise

2014 (Mar): OWASP Presentation - Continuous
Security Testing in a DevOps World

Security in Waterfall
(Secure SDLC)

Introduced

Security in Agile
(Secure SDLC)

Security in DevOps
(DevSecOps)

Snippets of Statements Extracted From
Various Online Sources:

• DevOps is better with security and security
is better with DevOps

• With DevOps, security gets to be
introduced early in the development cycle
and this minimizes risks massively

• Apps Built Better: Why DevSecOps is Your
Security Team’s Silver Bullet

The Paradigm Shift and
The Rise In Misconception

• Over the last few years, there has been a significant rise in the popularity of DevSecOps.
• However, without proper clarity on when to go for DevSecOps, there has also been an

increasing misconception about it.

The Misconception:
Security is better with
DevOps

So, What Is Wrong With Such
Statements?

• These statements promote in a way that
Secure SDLC works best only with DevOps

• Similar statements can be found in several
articles scattered all over the internet

• While promoting DevSecOps is essential,
overhype can be misleading

SDLC Security Stage-gate
Activities

Waterfall Agile DevOps ML/AI-Ops
(DevOps+ML)

Next-Gen Cool
Software

Engineering
Lifecycle Name??

Building Security into each software lifecycle = Common-Sense alignment of stage gate security activities

Requirements

Design

Coding

QA

Release

Requirements Review

Design Review

Code Review

Penetration Testing

Post-Release Testing

Applying Common-Sense Security
In Each Engineering Lifecycle

The common-sense
security activities
alignment with software
engineering stage gates

Migrating to DevOps / DevSecOps?

However, if you are migrating to DevOps because you thought or heard that the entire industry is migrating toward it,
then it is not a rational decision.

Decision making flow
chart to determine
whether to go for
DevSecOps

The analogy provided
here is meant to create
awareness, not to offend
anyone

The Herd Mentality
(Going with the flow without rational thinking)

Building Security into the SDL
is always explicit, not implicit

• Building security into the software engineering lifecycle (Waterfall, Agile or DevOps) is
always explicit, not implicit.

• There is no such Silver Bullet in Software Security Engineering

• The level of software security assurance largely depends on
• how thorough the security assessment is done at each stage gate and
• whether the vulnerabilities are mitigated timely

• A fixed set of common-sense security activities exists that remains the same across all
types of development methodologies.

There is no such Silver
Bullet in Software Security
Engineering

Final Words

• Treat all known security vulnerabilities as a pandemic, especially if they have
been around for over decades.

• No one wants Covid-19 to last for the next 20 years. The same feelings apply to
known security bugs.

• If some organisations here take away the suggestions to eradicate known bugs in
your applications and achieve success in eliminating them, then spread the word
and talk about your success.

• Your organisation's success story on eliminating all known bugs will inspire other
organisations and potentially lead to a global ripple effect.

• Let's reassess the state of known security bugs in about 20 years from now!!!

Thanks for listening to this talk!!

Questions

Q&A

