Software Security Engineering

Learnings from the past to fix the future

Mohanty

Www.seqa.co.nz

Over 20 years of experience

i Wh |? SEOA
e S Oaml: Q

WRsE How my experience is relevant to this talk? e

* Head of Security Services at SEQA Security (a New Zealand based company)

* QOver 20 years of Offensive and Defensive Security Experience (since 1997-1998)

* The vast majority of the experience has been vulnerability research-focused and exploit development

e Over 10+ years of Software Security Engineering Background
* Led Security Engineering CoE of mid-sized and large Technology Companies

* Worked closely with the multiple engineering teams to integrate security across SDLC

* A simple security guy who likes to solve complex security problems using simple methods

Personal Website: coffeeandsecurity.com Twitter: @coffeensecurity Email: d3basis.mOhanty@gmail.com

This talk is broken down O :
into four parts verview
)

* The History:

Historical data shows we continue to see around two decades old security bugs

* The Reason:
Why do we still continue to see one to two decades old security bugs?

* The Solution:
The top two mitigation strategies to consider based on the past learnings

* The Misconception:
The Silver Bullet In Software Security Engineering

Let’s begin with the
history and look at the

State of Software Security
Vulnerabilities

The History:

The Present State of Security Vulnerabilities:
Historical data shows we continue to see around two decades old security bugs.

== - Top Application Security Vulnerabilities

Security Vulnerabilities

owsse That has be around for over two decades

* Cross Site Scripting (webapp)
As per Wikipedia: https://en.wikipedia.org/wiki/Cross-site scripting
* Microsoft security-engineers introduced the term "cross-site scripting" in January 2000
* XSS vulnerabilities have been reported and exploited since the 1990s

* SQL Injection (webapp and OS-native apps)
As per Wikipedia: https://en.wikipedia.org/wiki/SQL injection
* The first public discussions of SQL injection started appearing around 1998 (an article in Phrack Magazine)

* Deserialization Issue (web-app, OS-native apps)

* 01 Aug 2002: Integer overflow in xdr_array() function when deserializing the XDR stream
https://www.kb.cert.org/vuls/id/192995

e o Top OS and OS-Native Apps Vulnerabilities

Security Vulnerabilities

nnnnnnnnnnn

0wesP That has be around for over one to two decades

e Buffer Overflow

As per Wikipedia: https://en.wikipedia.org/wiki/Buffer overflow

» Buffer overflows were understood and partially publicly documented as early as 1972

* The earliest documented hostile exploitation of a buffer overflow was in 1988 (Morris worm)

* In 1996: Phrack magazine article "Smashing the Stack for Fun and Profit“ by Elias Levy (aka Aleph One)

» Race Condition (OS, OS-Native apps and webapps)

* May 1995: Publication title “A Taxonomy of UNIX System and Network Vulnerabilities”
https://cwe.mitre.org/documents/sources/ATaxonomyofUnixSystemandNetworkVulnerabilities%5BBishop95%5D.pdf

* CVE-2001-0317: https://nvd.nist.gov/vuln/detail/CVE-2001-0317

* Use-After-Free (UAF) and Double Free

* CVE-2006-4997: Freed pointer dereference in the clip_mkip function in net/atm/clip.c of the ATM subsystem in Linux kernel
e CVE-2002-0059: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0059
* More examples of double free: https://cwe.mitre.org/data/definitions/415.html

The History:

History of Few Common Bug Classes

Security Vulnerabilities

cvedetails.com/vulnerabilities-by-types.php Screenshot date: 15 September 2021
o Observations: Vulnerabilities By Type
s Http : < =
° The maj:ority o_f the bug Year Vu!net;:ilities Das ExECO:::m vertiov C::re::tgn Injes‘:tlion X5 !I”lr:t:tr:?l' ‘;::’;::: so?ny:t“msng InfoGrr::tion Pns:'l:;es CRE Incl::.::ion ex':l‘::its
classes in the list have been |. 1999 = pee pes e . - e i e .
around two decades oe -~ . — r— o - . - - - —
- 2001 1677 403 403 287 Z 34 124 83 36 220 2 2
* This list relates to bugs - o P) = 2 T = e e % 108 3 T 3
affecting multiple =0 o 381 a2 72 2 50 129 0 1 &2 ™ 144 P s
applications and software. 2004 2451 580 614 408 3 148 201 1n 12 1 %6 134 s 38 5
2005 4935 838 1627 857 21 604 86 202 1S 288 281 221 11 100 14
* The count of bugs across 2006 6610 g3 2719 664 a1 967 1302 322 8 267 272 184 18 849 30
each year may not < 2007 6520 1101 2601 955 os 08 883 338 1 287 36 242 & 700 45
necessarily be accurate. 2008 5632 894 2310 699 128 1101 807 362 Z 288 268 188 8 170 6
2009 5736 1035 2185 698 188 963 851 323] 337 302 223 115 138 738
* However, you get an idea 2010 4653 1102 1714 626 342 520 85 208 8 24 284 238 8 73 1su
that these bugs have been e 4155 1221 134 13 3\ 24 400 108 z i s 28 ~ -
around for a long period a2 5207] adas) 1489 823 422 243 122 122 12 244 222 220 166 14 23
2013 5191 1455 1186 856 366 156 650 110 z 352 512 274 123 1 208
° Conclusion: 2014 7939 1599 1572 841 420 304 1103 204 12 457 2106 238 264 2 403
2015 6504 1793 1830 1084 749 221 784 151 12 577 Z53 366 248 3 129
Given that these bug classes 2016 6454 2029 1496 1312 717 94 498 99 15 444 870 602 86 7 1
have been around for two 2017 14714 3155 3004 2494 745 s08 1518 279 u 629 1659 459 327 18 s
decades, it implies that 2018 16557 1853 3041 2121 400 517 2048 545 1 708 1238 247 481 i 4
something is not right with how e 17344 1342 3201 1286 = == = - s B = B = =
the Industry has dealt with e 18523 331 3249 @ loo4) 409 469 208 0 M — - S . = =
2021 13759 1312 2742 1156 310 458 1794 314 3 572 622 186 293 28
these bugs. -
= Total 160050 26694 39636 20560 6250 8913 20086 5046 189 8128 12507 5576 3352 2317 4423

Note: This may not be the most comprehensive list but you get the overall picture.

The Big Question

So, why do we continue to see one to two decades-
old security bugs?

The Reason(s)

There are many reasons, but here we will discuss the two most prominent reasons.

The most common

8 o The Two Most Prominent Reasons

else's problem.

The Reasons

The two most prominent reasons are obscured within the way the vast majority of the
Organisation responds to a bug report of the applications and software:

* They are responsible for supporting

* They aren’t responsible for supporting

Note: While there are many reasons but here we will discuss the two most prominent reasons

owsse (of the applications and software you support)

The Reason No. 1

Typical vulnerability mitigation strategy, upon receiving a bug report affecting the
software you are responsible for:

* Fix exactly what is reported
* Fix exactly what is reported including any other instances of the same bug

* Fix based on the bugs risk rating but follow the second approach

While this is fine but...

Disadvantage of Such Mitigation Strategies

Common Mitigation Strategies Disadvantages

You fix a reported bug but do not check for any bug You are likely to miss other instances and variants
instances or variants in the same application. of the same bug in the application (if they exist).

You fix all instances and variants of a particular bug in an
application but do not check whether similar bugs exist in
other applications you support.

You are likely to miss instances and variants of the
same bug if they exist in other applications.

You follow the second approach but fix issues with Several historical evidence shows that bugs that
relatively higher risk ratings (e.g. critical/high/medium) but look low hanging or trivial can be combined with
do not fix any lower risk rating issue. other bugs to perform a more practical attack.

If such mitigation strategies resonate with your bug mitigation practices, you are far from making your application
and software resilient against known security bugs.

o The Way “The Industry” Respond

OWASP

~~~~~~~~~~~~~~~~~~~~~~ To Any Publicly Reported Security Bug

Reason No.2

| Path B ‘ While Path B may look obvious, this is
where is hidden one of the significant
o Not our problem. ~ root causes of why we continue to
see common security bugs that have
been around for over 1-2 decades.

A security bug is reported Does it affect our
publichy application / software?

Move on.

Everyone is happy

Triage and assess the risk
rating

Path A

Path A is the most common
response to a security bug
by the majority of the
organisation.

Pl -
fo k4 crtical Fhigh lan for urgent fix or

severity bug?

Release a public advisory
with the fix/patch details

St & temporary fix if permanent
fix would take longer

Plan mitigation based on risk
rating

The flow chart illustrates the most common approach across the industry while dealing with or responding to a bug report.



The Solution

Tackling security vulnerabilities going forward based on the learnings from the past



No.1 - Learnings from the past

Learnings from the historical records of all the known bugs



Let’s start by
understanding the

difference between a Bug
Class and Bug Nature.

* Class of the bug can be described as the way a particular bug is exploited and/or it’s
resulting impact.

* Nature of the bug primarily relates to the root cause of the bug.

* Example 1: Cross-Site Scripting in a file upload page

* Here the bug class is Cross Site Scripting.
* However, the nature of the bug is ‘missing sanitisation of tainted inputs’

e Example2:SQL Injection in an authentication form

* SQL Injection is a bug class name.
* However, the nature of bug is insecure interpretation of tainted inputs as commands.



bug class.

el o Translating A Bug Class

60> To It’s Corresponding Root Cause and Bug Nature

Bug Class / Type Root Cause Bug Nature
Cross Site Scripting When the tainted input becomes output without * Injection Flaw
sanitisation
SQL Injection When tainted input becomes command * Injection Flaw
* Insecure Interpretation of Input
Cross Site Request Forgery Lack of server-side mechanism to differentiate * Trust Boundary Violation
between legit and forged request
Broken Access Control Missing or inadequate check against required * Trust Boundary Violation
permissions * |Inadequate Session Management
Command Injection When tainted input becomes command * Injection Flaw

* Insecure Interpretation of Input

Note: The above list is not comprehensive. Instead, these are few examples provided as a guideline to understand the difference between a bug class
and the bug nature or the root cause.



=il o~ The Way “The Industry” Must Respond

security vulnerabilities

owRse.  To Any Publicly Reported Bugs

A security bug is reported
publicly

Triage and assess the risk
rating

Dioes it affect our
application [ software?

Is it a critical / high
severity bug?

Plan mitigation based on risk
rating

Identify the nature of
the bug

Is your application
affected?

Plan for urgent fix or
temporary fix if permanent
fix would take longer

Path B

Verify whether your application has
] functionality or process that can be
affected by the similar natured bug

Release a public advisory
with the fix/patch details



=== o Decoding The Nature of a Bug (MS00-083)

Bug

ANNIVERSARY

owAsk CVE-2000-0817 (MS00-083): Buffer overflow in the HTTP protocol parser for Microsoft Network Monitor (Netmon) allows
remote attackers to execute arbitrary commands via malformed data, aka the "Netmon Protocol Parsing" vulnerability.

CVE-2000-0817: Buffer overflow in the HTTP protocol
parser for Microsoft Network Monitor (Netron)

Root Cause Analysis

Bug Class: Buffer Overflow

Identify the root cause

Conclusion: This bug implies that things can go
wrong in a parser if it lacks relevant security
validation during input parsing.

Mature of Bug: Parsing Vulnerability Root Cause: Buffer Overflow due to several
ctor: Parser Functionality unchecked buffers in the protocol parser

Does your application or software Thoroughly identify all instances of parser
implement any parser functionality e = & fUNctionalities regardless of the input type
(regardless of the input type)? (File, Protocol, Paths etc.)

Keep a record of such an attack vector
and the corresponding details for future
reference during newer design or
existing design changes

Get a thorough security testing done forall
the identified instances and fix any identified
security issues

Are'youdoing 8 new
application design or making

Attack Vectors
Database

changes o an existing
architecture?




‘== -~ Decoding The Nature of a Bug

owsse (More Examples)

* File Parsing Vulnerabilities
* MS04-007: ASN.1 parsing vulnerability (828028)
* MS04-028: Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution

* Protocol Parsing Vulnerabilities
* MSO00-083: Netmon Protocol Parsing Vulnerability
e CVE-2004-0054: Multiple vulnerabilities in the H.323 protocol implementation for Cisco 10S 11.3T
through 12.2T
* Path Parsing Vulnerabilities
* MS00-017: DOS Device in Path Name Vulnerability
* MSO00-078: Web Server Folder Traversal Vulnerability

All these examples imply that any parser can have such security problems.



o Recommendations

Based on learnings from the historical bug reports

 Combing Operation (to crack down on known security bugs)

* Treat every security bug report as important regardless of whether it affects your or another company software and dissect
the bug nature to take appropriate mitigation actions.

* Thoroughly go through the historical bug records in the CVE databases (cvedetails.com and cve.mitre.org) or similar vendor
databases, including the exploit databases (exploit-db.com), to identify all kinds of known bugs in your applications.

» Attack Vector Database (Create and keep it up-to-date)

Keep the database updated with the intel obtained through previous step regardless of whether the bug affects your or
another company's software.

Refer to the database for identifying potential risks in your existing application and during future design changes.

* Identify All Bug Variants (across all applications you support)

Upon identifying a bug in a particular application, identify all instances and variants across the same application and any
other applications you support to apply appropriate mitigation consistently.



The Solution No.2
= &)
OWwAsSP

No.2 - Learnings from the past

Learnings from the way memory corruption bugs have been brought under control
in OS, Web Browsers and OS-Native Apps



9 o~ Typical Exploit and Defense In Depth

owsse (Windows Edition)

Targeted Mitigation
(behavioural v/s non-behavioural checks)

Trigger the bug

ASLR Address Space Randomisation

Typical Exploit Building Blocks

Trigger the bug Indirect Jump or call

(jmp / call / Stack Pivot) Prevent indirect jump or call.
CFG / XFG Note: CFG is deprecated, and an improved
version called XFG will be introduced in

future releases of Windows.
NOPSLED
Prevents the ability to allocate
ACG «
new executable memory
ROP Chain

Shellcode (Payload)
DEP / NX

Non-Behavioural
Check

Indirect Jump or call

NOPSLED

Behavioural Check

ROP Chain

Shellcode (Payload)

Mark memory pages as non-
executable




e Targeted Exploit Mitigation

1

5

ANNIVERSARY

owsse (Windows Edition)

Windows 10 Mitigation Available under exploit protection

Arbitrary code guard (ACG) yes

Block remote images yes

Block untrusted fonts yes

Data Execution Prevention (DEP) yes

Export address filtering (EAF) yes .

Force randomization for images (Mandatory ASLR) yes i M 0 d e r n O p e ratl n g Syste m S a n d We b
NullPage Security Mitigation yes (Included natively in Windows 10) T

Randomize memory allocations (Bottom-Up ASLR) yes Browse rS focuses On kl I I | ng a II known
Simulate execution (SimExec) yes . . .

Validate APl invocation (CallerCheck) yes teCh n |q u eS u SEd | n a n exp I O |t

Validate exception chains (SEHOP) yes

Validate stack integrity (StackPivot) yes

Certificate trust (configurable certificate pinning) Windows 10 provides enterprise certificate pinning

Heap spray allocation Ineffective against newer browser-based exploits; newer

mitigations provide better protection. See Mitigate threats by i Th e | iSt i n CI U d eS b Ot h b e h aVi 0 U ra I a n d n O n =

using Windows 10 security features for more information

Block low integrity images yes b e h aVi O u ra I C h e C kS

Code integrity guard yes
Disable extension points yes
Disable Win32k system calls yes
Do not allow child processes yes
Import address filtering (IAF) yes
\Validate handle usage yes
\Validate heap integrity yes
\Validate image dependency integrity yes

Windows 10 mitigation for various known exploit techniques

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-
protection?view=0365-worldwide



i ~~ \Web-based Application Mitigation

* In Web-based applications, the widely used mitigation techniques primarily focus on non-
behavioural checks against attacks.

Example: Input Validation, Output Escaping, Parameterized Queries etc

* There is limited or no focus on introducing behavioural based mitigation



o Introducing Behavioral Based Checks

AAAAAAAAA

OURSE (in applications and software)

’. * An adversary can only make a finite set of moves
* Technically applications or software can be programmed to analyse
infinite moves of an adversary and respond accordingly

* Integrating Machine Learning (ML) with your critical application
infrastructure can do such tasks with much ease.

* ML/AI Technology has matured significantly over the years.

* Any seasoned developer can leverage ML/AI technology to
integrate with applications.



el o Integrating Machine Learning

AAAAAAAAAAA

OURSE- (in applications and software)

Data Source ML Inference Host

Apache

Kafk
S ML Inference System

Application Logs l ‘

ML Model

Internet of
Things

A simple design of ML integration with application

Data Destination

Apache
Kafka

Web Applications

Web APIs




o Recommendations

9HRSE Based on learnings from the OS and Browser mitigation

* Introduce Machine Learning (ML)
* Aside from the standard mitigation, introduce ML/Al technology to build behavioral checks within your application

* Train the ML to monitor behaviours and any deviations in use cases

* Tackling 0-days!!! Is it practical? Yes — To a larger extent

* Refer to CVEs, exploit databases and other product vendors security advisory, to track the nature of bugs.
* Map those bugs with your products/applications and address them if there are similar nature bugs

* Train the ML/AI to analyse and understand the nature of legit IN and OUT traffic. Any deviation must be blocked and
inspected.

*  While achieving 100% resilience against 0-days may not seem practical. Still, with comprehensive defense-in-depth and
leveraging ML, 0-days exploitation can be made very difficult to the extent that it becomes nearly impossible.



The Misconception:
DevSecOps — The Silver

Bullet In Software
Security Engineering

The Misconception

The Silver Bullet In Software Security Engineering



The.Softv.vare.Security T h e Pa ra d ig m S h ift
Engineering Lifecycle

owsse  (in Software “Security” Engineering)

Timeline

Timeline 1988 1999 2001 2002 2003 2004 2005 2006 2007 2012 2013 2014 2015 2017 2019 2021

Initial Industry
Adoption

Waterfall

1988: NIST SP 500-153 - Guide to Auditing for Controls and Security
2002: GIAC Paper - Security in the SDLC by Larry G

S ity in Waterfall
bl 2004: |EEE Publication: Software Security by G. McGraw

(Secure SDLC)
2004: The OWASP Testing Project v1.0
2006 (May): Microsoft Secure Development Lifecycle by Michael Howard and Steve Lipner
2001 2002 2003 2004 2005 2006 2007 2012 2013 2014 2015 2017 2019 2021
Agile

o . 2005 (Dec): Secure Software Development Life Cycle Processes by Noopur Davis (Brief mention of Security in Agile)
Security in Agile

(Secure SDLC) 2006 (May): Microsoft Secure Development Lifecycle by Michael Howard and Steve Lipner

2006 (Aug): Department of Homeland Security - Security in the Software Lifecycle

2011 2012 2013 2014 2015 2017 2019 2021
Initial Industry
Adoption

Ideation

2012 (Jan): DevOpsSec: Creating the Agile Triangle (Gartner)
2012 (Apr): DevOpsSec Applying DevOps Principles to Security
(DevOpsDays Presentation)
2014 (Mar): OWASP Presentation - Continuous
Security Testing in a DevOps World
2015 (Oct): AWS re:Invent - Architecting
for End-to-End Security in the Enterprise

Security in DevOps
(DevSecOps)




DevOps

== . The Paradigm Shift and

arsP.  The Rise In Misconception

* Over the last few years, there has been a significant rise in the popularity of DevSecOps.

* However, without proper clarity on when to go for DevSecOps, there has also been an
increasing misconception about it.

Snippets of Statements Extracted From So, What Is Wrong With Such
Various Online Sources: Statements?
* DevOps is better with security and security * These statements promote in a way that
is better with DevOps Secure SDLC works best only with DevOps
* With DevOps, security gets to be  Similar statements can be found in several
introduced early in the development cycle articles scattered all over the internet

and this minimizes risks massivel . : : :
Y * While promoting DevSecOps is essential,

* Apps Built Better: Why DevSecOps is Your overhype can be misleading
Security Team’s Silver Bullet



The common-sense

- o Applying Common-Sense Security

alignment with software
engineering stage gates

owese |n Each Engineering Lifecycle

Next-Gen Cool
ML/AI-Ops Software
(DevOps+ML) Engineering
Lifecycle Name??

SDLC Security Stage-gate
Activities

Requirements

Requirements Review

Design Design Review

Coding Code Review

Penetration Testing

Release Post-Release Testing




whether to go for

DevSecOps OLWASP

Ml Migrating to DevOps / DevSecOps?

Perform DevOps Migration RO Evaluation: Assess
Is it due to business * themigration and annual running cost
* whether there will be enhanced productivity
whether you'd have the skilled resources to manage it

Planning to migrate away from
Waterfall / Agile to DevOps? needs?

Is the outcome is in favour of
migrating to DevOps?

Is it only to ensure better Thereguirement is primarily business needs
software security assurance? along with software security assurance.

Perfect! Go for it!!
Stop!! You don’t have to migrate to
DevOps if your only business objective is
to ensure software security.

However, if you are migrating to DevOps because you thought or heard that the entire industry is migrating toward it,
then it is not a rational decision.




S o The Herd Mentality

awareness, not to offend

anyone

owRse (Going with the flow without rational thinking)

I don't know where we're going, but
35 from the look of this crowd, it's got to
W be good!
Any idea, where
are we going?

Handcrafted by Debasis Mohanty using MS Paint 3D (Graphic inspired by an existing photo available somewhere online)



S o Building Security into the SDL

Engineering

nnnnnnnnnnn

o0se s always explicit, not implicit

* Building security into the software engineering lifecycle (Waterfall, Agile or DevOps) is
always explicit, not implicit.

* There is no such Silver Bullet in Software Security Engineering

* The level of software security assurance largely depends on
* how thorough the security assessment is done at each stage gate and
* whether the vulnerabilities are mitigated timely

* A fixed set of common-sense security activities exists that remains the same across all
types of development methodologies.



* Treat all known security vulnerabilities as a pandemic, especially if they have
been around for over decades.

* No one wants Covid-19 to last for the next 20 years. The same feelings apply to
known security bugs.

* If some organisations here take away the suggestions to eradicate known bugs in
your applications and achieve success in eliminating them, then spread the word
and talk about your success.

* Your organisation's success story on eliminating all known bugs will inspire other
organisations and potentially lead to a global ripple effect.

* Let's reassess the state of known security bugs in about 20 years from now!!! ©

Thanks for listening to this talk!!



Questions



